My name is Alan Banks. I am the UK Lightweight Innovations Manager at Ford Motor Company. I have been at Ford for approximately 39 years and I have a first-class BEng and an MSc. I also Chair the Board at Composites UK, Chair the Light-weighting Strategy Group for the UK Auto Council, and Chair the Vehicular Composites Leadership Forum.
My work is based on our commercial vehicles, and whilst fuel economy is a critical to-buy enabler for our customers, we look at payload efficiency and total cost of ownership as the biggest metrics for our customer base. As we transition towards zero-emission vehicles, CO2 reduction is of critical importance.
In this arena where the vehicle doesn’t generate CO2 in its run time, we need to be aware of our embedded CO2 footprint. So having a clear plan for sustainability and understanding our responsibilities to our customers and the environment go hand in hand in my day-to-day life.
Projects were predominantly research-based to determine how we can affordably deploy high-end lightweight materials at scale. The CLASS project enabled us to learn about mixed material designs and how these materials interact during manufacture and in service. This project led directly to the CHASSIS project. This reduced the weight of 3 major structural suspension members by more than 46% (31.9kg) and only used a production process capable of mass production.
I think that the ‘now’ is more than adequately covered by the advances in aluminium processing and composite materials. However, we shouldn’t lose sight of steel. Steel is still going to be the material of choice for most OEMs due to its efficient cost/weight parameters. But steel is increasing in its research just as fast as the rest of the materials industry.
I talked about the right material in the right place and this is especially true of steel – advanced high-strength steel. I believe that it is entirely feasible to offer designs in lightweight steel with materials with a base strength of 1000MPA that are formable and weldable, reducing weight by as much as 25%. Plus, using a reduced gauge can mean cost neutrality. Lowering the weight, improving the performance, and reducing the cost without affecting recycling and sustainability aspects of the designs is a win-win-win-win. Plus we allow more payload to be carried by a single vehicle, reducing the burden on the world’s natural resources. This is far and away my biggest focus and keeps me coming to work.
Affordable light-weighting is about encompassing scalability while enhancing our sustainability credentials. It is incredibly important that we as an industry tackle these issues together. We all have the same issue, we live on the same planet, and we all use the same resources. Collaboration I think will be key to success, not only for Ford but for the global economy. This is not a test that anyone should fail. We all share the responsibility to succeed.
Electric vehicles, like it or not, have added a huge amount of weight to our vehicles. More weight means more natural resources being used. This is bad enough for passenger cars, but for commercial vehicles, this detracts from payload efficiency. When people’s diving licenses are restricted to 3.5T for a Cat B license, this means a restricted payload and therefore more vehicles on the road using even more resources to manufacture. This isn’t a sustainable scenario.
Whilst it’s true that in Britain and the EU there is a driving license derogation up to 4.25T for electric vehicles, this is goods carrying vehicles only and is due to run out in 2023. Lotus founder Colin Chapman had a motto where he said ‘Just add Lightness’. This is a phrase on every email I send and I want people to have it in the forefront of their minds when they design their components.
Events are where the real networking and collaborations take place. Whilst we coped virtually during the pandemic, I think everyone would agree that there is no substitute for face-to-face collaborations and networking. You get out of these events what you put in, and I am very excited to meet everyone.